
情報処理学会研究報告
IPSJ SIG Technical Report

ペンギンの腹部模様描画による個体検索アルゴリズムの改善
と実験室実験および実地実験での検証

高野 閑1 中川 由貴1 中村 聡史1

概要：動物園や水族館における生き物を漠然と観察してしまう問題を解決するため，我々は腹部の模様が特
徴的なペンギンに着目し，描画をしながら観察および検索を行うシステムを実現してきた．しかし，実地
実験などではペンギンの見え方の違いで，描かれる点がグリッド境界線上に配置された結果，ランキング
上位に対象とするペンギンが登場しないなど，手法の精度に関する問題があった．そこで本研究では，境
界線上の点もカバーするように，グリッドの分割方法を変え，それぞれのスコアを合算して最終スコアと
する手法を提案した．また，過去の研究で構築した実験室での描画データセットおよびサンシャイン水族
館で実施された実地実験データに対して検証を行った結果，推定したペンギンランキングの上位 1位以内
正解率が実験室データでは従来手法に比べ約 19%，実地実験データでは約 10%の精度向上が確認された．
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1. はじめに
水族館や動物園は従来，娯楽施設としての側面が強調さ

れてきたが，生物多様性の危機や社会的要請に応じて教育・
研究・保全といった新たな機能を担う社会教育施設へと進
化している [1,2]．実際，多くの水族館・動物園が自然保護
への意識啓発や来館者の学習促進を使命に掲げている．一
方，来館者は必ずしも展示を学習の機会として活用してお
らず，解説パネルなどに目を通す来館者は 27%に留まる [3]

など，動物を漠然と眺める傾向が指摘されている [4, 5]．
来館者が動物園・水族館でより深い学びを得るには，展

示手法の工夫だけでなく，来館者自身が能動的に動物に関
わる体験を促すことが重要である．特に，動物を種全体と
してではなく「個体」として認識することが，観察への関
与を深め，記憶や学習に良い影響を与えることが指摘され
ている [3]．
ここで，水族館や動物園での人気が高いペンギンは，外

見上の個体差が大きくないことから，来館者が個体を識別
することは容易ではない [6]．ペンギン個体識別の伝統的
手法としてはフリッパーバンドが広く用いられてきたが，
長期研究により生存率や繁殖成功への負の影響が報告され
ており [7]，動物福祉の観点からも代替手法の検討が求め
られている．
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我々は，こうした問題を踏まえ，観察者がペンギンの腹部
模様を描画することで個体検索を行う手法を提案し，実験
室実験，および実地実験で有用性を明らかにしてきた [6]．
しかし，ペンギンの腹部領域を 3× 3グリッドに分割する
従来の手法では，特に実地実験においては精度が低いとい
う問題があった [8]．具体的には，描画点がグリッド境界
付近に集中した場合に精度が悪化する傾向があった．
そこで本研究では，従来の 3× 3 に加えて，4× 4や 5× 5

など複数グリッドを使ってスコアリングを行い，結果を統
合する手法を提案する．複数の分割数を組み合わせること
で，粗いグリッドでの全体的な斑点分布と，細かいグリッ
ドでの局所的な特徴を同時に扱い，領域境界付近の揺らぎ
に頑健な類似度評価を実現する．

2. 関連研究
2.1 ペンギンの腹部模様を用いた個体識別研究
Burghardtら [9]は，成鳥のケープペンギン（アフリカ

ペンギン）の斑点模様が一羽一羽異なり，季節によって変
化しないことに着目し，その胸の斑点模様を生体識別子と
して利用する手法を提案した．実際に，胸部斑点パターン
の抽出によって各ペンギンごとに一意の生体識別子を生成
し，用いることで映像や写真から得たペンギンを個体識別
することができることを示した．
また，Baciadonnaら [10]は，アフリカペンギンが斑点

模様を視覚的手がかりに仲間を識別していることを，行動
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観察実験により明らかにした．従来はペンギンのコミュニ
ケーションは主に聴覚に依存していると考えられていた
が，この結論により視覚的手がかりがペンギンにおいても
重要な役割を果たしていると判明した．
これらの先行研究は，ペンギンの腹部・胸部に現れる斑

点模様が，生体学的に個体差の大きい特徴であるとともに，
個体識別の手がかりとして有効であることを示している．

2.2 他の生き物の体表模様を用いた個体識別
動物の体表模様を用いた個体識別の研究は，ペンギン以

外を対象としたものも多く存在する．アシカ類では，上顎
のひげが生える位置に現れる黒点（ひげ斑点）の配置が
個体固有であることを利用し，ひげ斑点パターンから個
体を同定する手法が提案されている [11]．またシマウマで
は，縞模様を特徴量として扱い，写真から個体を照合す
る StripeSpotterなどの個体識別システムが実現されてい
る [12]．StripeSpotterは，縞模様を StripeCodeと呼ばれ
る識別子に変換し，データベースとの照合によって個体を
同定している．さらに魚類においても，Meguroら [13]は，
ゼブラフィッシュの尾びれ・臀びれに現れる縞模様の違い
を用いて個体を識別する手法を提案している．このように
小型の水生生物に対しても体表パターンが安定した識別手
がかりとなることが示されている．
これらの研究は，自然に存在する体表模様は個体差が大

きく，写真撮影などにより取得できるため，個体識別に有
効な特徴量として利用できるという共通点をもつ．本研究
が扱うベクトルも，こうした模様ベースの個体識別研究の
流れに位置づけられるが，カメラベースの個体識別はより
よい観察にはつながらないと考え，斑点を描く能動的な方
法をとっている．

2.3 グリッド分割および多スケール特徴量に基づく類似
度計算

画像認識分野では，局所特徴量の出現頻度をヒストグ
ラム化する Bag-of-Features表現が広く用いられてきたが，
画像全体を 1つのヒストグラムで表現するだけでは空間配
置情報が失われるという課題が指摘されている．この課題
に対し，Spatial Pyramid Matching(SPM) [14] は，画像を
複数解像度のグリッドに分割し，各領域の特徴量を階層的
に統合することで空間的な情報を保持する手法として知ら
れている．また，植物の葉画像認識において，葉画像を複
数のグリッドに分割し，各グリッドから局所特徴量を抽出
して統合する Multiple-gridベースのローカル記述子が提
案されており [15]，多スケールなグリッド分割とヒストグ
ラム特徴の統合が識別性能向上に有効であることが報告さ
れている．さらに，3D点群解析においても，多スケール
なグリッドを用いて空間を分割し，各セルに意味ラベルや

特徴量を付与することで，物体検出やセグメンテーション
の性能を向上させる枠組みが提案されている [16]．
本研究のアルゴリズムは，ペンギンの腹部を複数のグ

リッド分割で解析し，それぞれのグリッドで得られる特徴
量を統合するものであり，SPMやMultiple-gridベースの
手法と同様に位置に依存した頻度情報をベクトルとして表
現し，多スケールに統合するという点で概念的な類似性を
もつものである．一方で，本研究は画像特徴量ではなく，
ひとの描画行為により得られる離散点を扱う点で SPMと
異なる．

3. 正解データセット
精度を検証するためには，描画された腹部模様がどのペ

ンギン個体に対応するかを示すための正解ラベル付きデー
タが必要になる．本章では，実験室実験データと実地実験
データにおける正解ラベルの付与方法と，それぞれの信頼
性について述べる．

3.1 実験室実験データにおける正解
実験室実験 [8]では，実験協力者はスクリーンに提示さ
れたペンギン個体の腹部画像を見ながら模写する形式で斑
点を描画した．提示される画像にはペンギンの個体名が明
示されており，実験協力者は描画後にその個体名を入力す
るため，正解ラベルは実験手続き上明確であり，誤りの可
能性はない．ただし，入力された個体名には表記揺れが数
件存在したため，本研究ではこれらを手作業で統一し，表
記揺れを取り除いたうえで正解データセットとした．

3.2 実地実験データにおける正解
我々が過去に行っていた実地実験 [8]では，描画後に提
示されるペンギン候補のランキング結果から実験協力者自
身が正解個体を選択するようになっていた．図 1にはシス
テムのログイン画面から検索結果ランキング画面を示す．
実験協力者自身はランキングから描いているペンギンを探
し，最後に「この子だった！！！」というボタンをクリッ
クしたものを正解としていた．
そのため，実地実験データにおける正解ラベルは，実験

協力者の選択に依存しているという問題があった．実際，
バックヤードにいるはずのペンギンが正解となっている
データや，斑点が少ないペンギンが正解とされていながら，
点が多数描画されていたデータが存在した．そのため，正
解とされたペンギンが観察した個体と一致しているとは限
らない．また明らかに不真面目な描画において正解データ
が定まっているものも存在した．そこで以下の基準でそう
したデータを除外した．
• 実地実験に協力していた研究室の学生が描いている
• バックヤードのペンギンが正解とされている
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図 1 上段からログイン画面，おえかき画面，下段から検索結果ラン
キング画面，個体詳細．「この子だった！！！」のボタンを押
すと，選択したペンギンが正解データとなる

• 斑点ではない文字や模様が描画されている
• 正解のペンギンの斑点に対して，斑点数が明らかに多
い/少ない

• 正解のペンギンには点が存在しない特徴的な位置に点
が描かれている

除外処理の結果，最終的に正解データとして 266 件の
データのうち，127件を除外し，139件のデータを分析対
象とした．

4. 提案手法
4.1 従来手法
これまでの研究 [6]では，腹部領域全体を 3 × 3 に分割

し，各領域に含まれる斑点数から 9要素の腹部模様ベクト
ルを構築し（図 2），コサイン類似度およびユークリッド
距離を用いて描画の類似度を算出していた．また，どのペ
ンギンかについては，実験室実験で得られた複数人の描画
データから，個体ごとの 3× 3について平均的な斑点分布

図 2 領域ごとの点数カウントの方法

図 3 左から 3× 3，4× 4，5× 5 の分割例

を表すベクトルを作成し，利用していた．
そのため，実地実験において描画点がグリッド境界付近

にある場合に精度が低下するなどの問題があった．

4.2 複数グリッド分割の導入
4.1節で述べた問題に対して，本研究では従来の 3× 3に

加えて複数の分割数を用いた特徴量を導入する．分割数を
変え，2× 2，3× 3のような粗いグリッドでは大まかな斑
点分布を捉え，4× 4，5× 5のような細かいグリッドでは
局所的な密度の違いを反映可能とする．この複数のグリッ
ド分割のスコアを統合することで，境界付近の揺らぎに頑
健な表現が可能となる．
図 3に 3× 3，4× 4，5× 5 の分割例を示す．

4.3 スコア算出とランキング付け
本研究では，まず識別対象のペンギン集合を P =

{p1, p2, . . . , pM} として，各ペンギン pi について，実験
室実験で得られた複数人の描画データより，分割数 n× n

のグリッドから得られるペンギンの個体ベクトル pi,nが求
められる．一方，ユーザが描いた腹部模様 uを n× nのグ
リッドに分割し，得られる特徴ベクトルを un とする．
スコア算出には，従来手法と同様にコサイン類似度と

ユークリッド距離を組み合わせた指標 similarity を用い
る．ここで cosineはコサイン類似度，distはユークリッド
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距離である．類似度スコアは以下で定義する．

similarity(un,pi,n) =
cosine(un,pi,n)

dist(un,pi,n) + 1

本研究では，複数のグリッド分割で得られた類似度を統
合する点が，ここで用いるグリッド集合を G とすると，ペ
ンギン pi の最終スコア Scoreは次式で与えられる：

Score(u, pi) =
∑
n∈G

similarity(un,pi,n)

腹部模様描画後の検索では，結合スコア Scoreの降順に
基づいて各ペンギン個体をランキング形式で検索候補とし
て提示する．

5. 評価と結果
グリッド分割によるそれぞれのスコアを合計した結合ス

コアの検索性能を実験室実験データおよび実地実験データ
を対象として評価する．

5.1 評価方法
評価指標には，推定されたランキングの上位 k位以内に
正解個体が含まれる割合である Top-k精度を用いる．本研
究ではまず，比較的粗い 2 × 2から細かい 5 × 5グリッド
分割でのスコアを組み合わせることで検索精度がどの程度
向上するのかを，実験室実験データおよび実地実験データ
を用いて検証する．

5.2 実験室実験データ
実験室実験は，教室内のスクリーンに提示された 44個
体のペンギン腹部画像を参加者が模写する形で描画した斑
点データで構成されている．統一された観察環境で収集さ
れているため，描画のばらつきが比較的少ない．
検索性能を検証するため，本研究では 5分割交差検証を

採用した．実験室データ（全 1,687件）を 5つに分割し，
各分割において 4分割分をペンギンの個体ベクトル（pi,n）
の作成に使用し，残り 1分割分を評価用データとした．
結果は，表 1の通りである．まず，従来手法に相当する

G = {3}のみの場合，Top-1は 0.699であった．それに対
して，3× 3 + 4× 4 + 5× 5を統合した G = {3, 4, 5}では，
Top-1精度は 0.889であり，従来手法よりも約 19%精度が
改善した．この G = {3, 4, 5}は，本章で扱う全ての組み合
わせの中で最も高い精度を示し，Top-2～Top-5のいずれに
おいても，0.948，0.965，0.973，0.978と高く，いずれの指
標においても最良の結果となった．また，分割数を統合す
ることで上位候補に正解個体が含まれる割合が増加した．
一方，全ての組み合わせが精度向上につながるわけでは
なく，G = {2}や G = {2, 4}など，従来手法よりも Top-1

精度が低くなるケースも確認された．特に G = {2}を含む

表 1 実験室データにおける分割パターン別精度（Top-1 降順）
G Top-1 Top-2 Top-3 Top-4 Top-5

{3, 4, 5} 0.889 0.948 0.965 0.973 0.978

{4, 5} 0.879 0.936 0.962 0.970 0.975

{2, 3, 4, 5} 0.853 0.923 0.947 0.962 0.971

{3, 5} 0.842 0.919 0.946 0.958 0.968

{3, 4} 0.838 0.912 0.944 0.957 0.966

{2, 4, 5} 0.815 0.907 0.937 0.957 0.964

{2, 3, 5} 0.813 0.902 0.934 0.947 0.957

{5} 0.796 0.878 0.920 0.936 0.945

{2, 3, 4} 0.790 0.888 0.916 0.941 0.960

{4} 0.763 0.865 0.904 0.931 0.947

{2, 5} 0.736 0.870 0.912 0.931 0.947

{2, 3} 0.722 0.833 0.887 0.917 0.934

{3} 0.699 0.821 0.876 0.907 0.922

{2, 4} 0.693 0.834 0.880 0.910 0.932

{2} 0.534 0.704 0.777 0.816 0.848

表 2 実地実験データにおける分割パターン別精度（Top-1 降順）
G Top-1 Top-2 Top-3 Top-4 Top-5

{2, 3, 5} 0.400 0.550 0.617 0.650 0.700

{2, 3, 4, 5} 0.400 0.542 0.592 0.675 0.708

{3, 4, 5} 0.392 0.575 0.617 0.683 0.742

{3, 5} 0.392 0.475 0.558 0.608 0.658

{2, 3} 0.375 0.500 0.583 0.633 0.683

{3, 4} 0.375 0.517 0.592 0.658 0.708

{2, 4, 5} 0.342 0.500 0.583 0.650 0.700

{2, 4} 0.333 0.483 0.583 0.625 0.650

{2, 5} 0.325 0.467 0.542 0.600 0.650

{4} 0.317 0.433 0.500 0.567 0.633

{3} 0.308 0.433 0.508 0.550 0.600

{4, 5} 0.267 0.458 0.550 0.625 0.667

{2} 0.258 0.408 0.492 0.567 0.608

{5} 0.217 0.333 0.442 0.517 0.600

パターンでは，分割数が粗すぎることにより特徴量が十分
に得られず，精度が低下する傾向が見られた．

5.3 実地実験データ
サンシャイン水族館で実施した実地実験データについ

て，3.2節で構築した正解データセットをもとに評価した．
なお，実験室実験ではデータが取得されなかった 3個体に
関しても，実地実験データには一定数の描画（計 19件）が
存在するが，これらの個体はペンギンの個体ベクトルを構
築できないため，検索性能評価からは除外し，120件を対
象とした．検索精度の検証では，全ての個体ベクトルを実
験室実験データから構築した．
結果は，表 2 の通りとなった．従来手法に相当する

G = {3} のみの場合，Top-1 は 0.308 であった．一方，
G = {2, 3, 5}の場合には Top-1精度が 0.400となり，従来
手法より約 10%の改善が見られた．Top-2～Top-5 でも同
様に，グリッド分割の追加に伴う改善傾向が確認された．
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図 4 個体ベクトル生成に利用するデータ数 l ごとの Top-1 精度

また，Top-5に着目すると，G = {3, 4, 5}が 0.742と最も
高く，実験室実験と同様に全体的に最も高い精度となった．
ただし，全ての組み合わせが一貫して性能を改善する

わけではなく，G = {5}や G = {4, 5}では Top-1精度が
G = {3}を下回る結果となった．

6. 考察
6.1 分割数がランキング精度に与える影響
本研究では，腹部領域を複数のグリッドで分割し，それ
らのスコアを統合する手法の有効性を検証した．まず 2×2

～ 5× 5の範囲で比較した結果，G = {2}では，分割数が
粗すぎたため実験室実験および実地実験のいずれにおいて
も従来の G = {3}よりも低い精度となった．
一方，G = {3, 4, 5}は最も高い精度を示し，特に実験室
実験データではTop-1精度は 0.889と最も高い値となった．
また，実地実験データでも他の統合に比べて高い精度を示
した．この結果は，異なる大きさのグリッドを組み合わせ
ることで，同一ペンギンに対する描画ごとの斑点配置の揺
らぎを捉えることができるためと考えられる．

6.2 個体ベクトル作成に必要なデータ数
本研究では，腹部模様を描画することでペンギン個体を
識別する枠組みを構築したが，その際にペンギンの個体ベ
クトルとして何件の描画を用いるべきかが明らかになって
おらず，これまでは 20～30人分のデータを収集していた．
個体ベクトルに用いる描画数が少なすぎると特徴が安定せ
ず，逆に多すぎる場合には収集の負担が増大する．今後，
様々な動物園・水族館への導入を考えた場合に必要なデー
タ数がわかっていることが望ましい．そのため，1個体に
つきどの程度の描画を集めれば十分な識別精度が得られる
のかを明らかにする．
ここでは，実験室実験データを用い，個体ベクトル生成
において使用する描画数 l と識別精度の関係を分析した．
具体的には，各ペンギン個体の描画データから l件をラン

ダムに抽出して個体ベクトルを構築し，さらに別の 10件
をテスト用データとして用いた．
試行に用いる描画については，全個体の見本数に対して

スコアを算出し，Top-1精度を求めた．この操作を l = 1～
18まで変化させながら繰り返し，各 lにおける識別精度を
全ペンギン個体で平均した．
結果を図 4 に示す．個体ベクトル生成に利用するデー
タ数 l を 1 から 5 まで増加させると，平均 Top-1 精度は
約 0.60から 0.82まで急激に向上した．一方，l = 6以降
は増加量が小さくなり，l = 10～12の範囲では平均 Top-1

精度はおよそ 0.87～0.88で推移し，飽和傾向が見られた．
l = 17において平均 Top-1精度は最大値 0.88程度に達し
たが，l = 12と比較した改善量は 0.01未満であり，実用上
は 10～12件程度の描画があれば十分な識別精度が得られ
るといえる．
また，ペンギン個体ごとに Top-1 精度が最大となる必

要なデータ数を求めたところ，最適なデータ数の平均は
l = 11.54であり，多くの個体が l = 8～13の範囲に集中し
ていた．
以上の結果から，個体ベクトル構築に必要な描画数は平

均的には 10～12件程度であり，これより多くの描画を追
加しても精度向上は限定的であることが示唆された．

6.3 分割数増加に伴う精度の飽和
5章で述べたように，グリッド分割数を増加させること
で特徴量が増え，検索精度が向上することが期待される一
方で，過度に細分割を行うと描画点数に対してグリッドが
過剰となり，スコア統合の効果が限定的になる可能性が
ある．そこで本節では，グリッドの分割数を段階的に増加
させた場合の検索精度の変化を分析する．G = {3} から
G = {3, 4, ..., 12}まで Top-k精度を指標として評価した．
これにより，分割数増加が検索性能に寄与する範囲，およ
び精度向上が頭打ちとなる飽和点を明らかにする．
まず，実験室実験データでの精度を図 5に示す．縦軸は

Top-kの精度，横軸はグリッド分割の累積を表す．Top-1

精度に着目すると，3× 3に対して，4× 4を追加した時点
で最も大きな精度の改善が見られたが，7× 7の累積以上は
改善幅が小さくなり，10× 10前後でほぼ頭打ちとなった．
次に実地実験データでの精度を図 6に表す．実験室実験
データと同様に，縦軸は Top-k の精度，横軸はグリッド
分割の累積を表す．Top-1精度に着目すると，実験室実験
データと同様に 3× 3の Top-1精度 0.308に対して，4× 4

を追加した時点で 0.375 という最も大きな精度の改善が
見られた．その後も 6 × 6まで累積すると，Top-1精度は
0.417に達し，ここまでは一貫した向上が見られた．しか
し，7× 7以降では精度が低下し，6× 6を上回る精度が見
られなかった．特に，12 × 12では 0.383まで低下してお
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図 5 実験室実験データにおけるグリッド分割数増加に伴うランキ
ング精度の変化（Top-k）

図 6 実地実験データにおけるグリッド分割数増加に伴うランキン
グ精度の変化（Top-k）

り，実験室実験データとは異なり，Top-1精度が悪化する
傾向が確認された．また，Top-2に着目すると，5× 5まで
のものが最も精度が高いことがわかる．
まず，正解データセットの信頼性が異なる．実験室実験

では，スクリーンに提示されたペンギン名と腹部画像が対
応した状態で描画を行うため信頼性が高い．一方，実地実
験では，描画後に実験協力者自身がシステムから提示され
るランキング一覧の中から正解だと思う個体を選択する方
式を採用している．この方式では，描画が不十分で実験協
力者自身が個体を正しく認識できない場合や，ランキング
上位が画面上部に固定表示される UIの影響で，スクロー
ルせずに上位候補をそのまま選択してしまう場合がある．
さらに，システムの検索精度が十分ではない場合には，本
来の正解個体が上位に提示されず，実験協力者が誤った候
補を選ばざるを得ない状況も生じる．これら複数の要因が
重なることで，実験協力者が最終的に選択した正解ラベル
自体に誤りが含まれる可能性があり，実地実験に特有のノ
イズとして結果に影響を与えると考えられる．正解データ
に対し，除外を行ったものの，本来の実験協力者の意図を
汲み取れなかった可能性がある．この差が実験室と実地の
精度差に影響していると考えられる．
次に，観察環境の違いによる描画のばらつきがある．実

験室実験では，同一の腹部画像を全員が同条件で模写する

図 7 実地実験での「オレライム」の描画 4 件

ために斑点数のばらつきが小さい．しかし，実地実験では
以下のような環境要因が描画の揺らぎを起こしていた．
• ペンギンが動くため腹部が見える時間が限られる
• 観察距離・角度が実験協力者ごとに異なる
• 光の反射や視力などで点が見えにくい場合がある
• 実験協力者ごとに腹部の中心と認識される位置が異
なる

• 年齢層が広く，描画の熟練度に差がある
これらの要因により，描画点の位置ずれや点数不足が生じ，
提案手法が十分に機能しないケースが見られる．実際に，
実地実験での描画に大きな差が出るペンギンがいた．その
例として，「オレライム」を挙げる．図 7に「オレライム」
の描画 4件を示す．左側の 2件では主に腹部の中央の斑点
が観察されており，数が少なめである．対して右側の 2件
では，腹部全体の斑点が観察され 20点以上描画されてい
た．このような実験協力者ごとに観察される斑点が大きく
異なることが描画の揺らぎとなっている．
以上の結果を踏まえると，実験室実験と実地実験の両方

において，3× 3から 5× 5または 6× 6までの累積が安定
して高い精度を示しており，両データセットに適している
ことが明らかとなった．
一方，7× 7以上の分割は，実験室実験では改善幅が小さ
く，実地実験ではむしろ精度が低下する傾向を示した．こ
れは，動的な観察環境での描画のばらつきが細かいグリッ
ドと相性が悪いと考えられる．そのため，実験室実験およ
び実地実験双方では 6× 6までの累積で留めることが合理
的であり，それ以上の細分割は必ずしも有効ではないこと
がわかる．

6.4 実験室実験と実地実験の違い
また，それぞれのデータセットでのペンギンごとの平均

の描画点数を比較したものを表 3に示す．実験室実験デー
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表 3 実験室実験と実地実験における腹部斑点数比較
ペンギン名 実験室 実地 差
青ライム 9.03 11.00 1.97

ピンク 2.02 2.40 0.38

金 5.93 6.00 0.07

白緑 8.10 7.80 -0.30

緑オレンジ 2.03 1.50 -0.53

オレンジ 7.91 7.25 -0.66

黒ピンク 7.80 7.00 -0.80

オレライム 20.12 19.29 -0.84

白ライム 7.93 7.00 -0.93

しろ 7.93 7.00 -0.93

みぃ 4.07 3.00 -1.07

テント 12.07 11.00 -1.07

ピンクライム 6.58 5.00 -1.58

ピンク黄 5.38 3.75 -1.62

緑ライム 7.87 6.20 -1.67

青オレンジ 6.67 5.00 -1.67

青ピンク 5.53 3.80 -1.73

くるみ 9.11 7.33 -1.77

おいも 4.78 3.00 -1.78

ダイスケ 10.82 9.00 -1.82

あやさ 4.57 2.00 -2.57

赤ピンク 5.93 3.33 -2.60

武蔵 11.60 8.84 -2.76

のんちゃん 17.63 14.69 -2.94

マリオ 6.39 3.00 -3.39

渚 6.50 3.00 -3.50

金緑 9.40 5.00 -4.40

青紫 10.43 6.00 -4.43

オレンジ銀 22.51 18.00 -4.51

赤白 14.37 9.00 -5.37

ペン太 15.11 7.00 -8.11

青 18.07 8.00 -10.07

タよりも実地実験データの方が平均の斑点の数が少なく，
実験室に比べて描画が簡略化される傾向が見られた．これ
は実地環境ではペンギンの腹部を観察しづらい場面が多
く，十分に書き込めない状況が発生することに起因すると
考えられる．図 8に「武蔵」の画像と実験室実験および実
地実験での描画例を示す．実験室実験では，左の「武蔵」
の画像が実際にスクリーンに映し出され，実験協力者の見
本となっていた．実験室実験と実地実験の描画例を比較す
ると，実験室実験は 18点で，実地実験は首元を含めずに
数えると 9点であった．このように，位置的に一致する点
はあるが，描画が簡略化されていることがわかる．
ペンギンの展示構造そのものが描画対象の偏りを生み，

実地実験のデータ品質に大きく影響している可能性もある．
サンシャイン水族館のペンギンにおける飼育エリアは「草
原エリア」「天空エリア」「バックヤード」の 3つに分類さ
れ，実地実験の際に飼育されている個体数は草原 16匹，天
空 24匹，バックヤード 7匹であった．表 4に実地実験に
おけるペンギンおよび展示エリアごとの描画回数を示す．

図 8 左：実験室実験で表示された「武蔵」の写真．中央：実験室実
験での描画例．右：実地実験での描画例

草原エリアでは 79件の描画が得られたのに対し，天空エ
リアでは 41件に留まった．これは草原エリアでは地上で
静止している個体も多く観察しやすい一方，天空エリアで
は頭上を高速に泳ぐ個体が多く，腹部の模様を観察しなが
ら描画することが困難であるためである．実際に天空エリ
アでシステムを使用した参加者の中には，2人組で 1人が
スマートフォンで撮影し，もう 1人がその画像を参照しな
がら描画する方法をとっているケースもあった．このよう
に 1人での観察では描画が難しいことから，天空エリアで
は描画データが十分に収集されなかったと考えられる．
こうした描画環境の差は検索精度にも表れている．表 5

に展示エリア別のTop-k精度の比較を示す．G = {3, 4, 5, 6}
のTop-k精度の比較では，草原エリアのTop-1精度が 0.443

であったのに対し，天空エリアは 0.366であった．Top-2，
Top-3においても草原エリアの精度が天空エリアを上回っ
ており，観察環境による描画品質の低下が個体識別精度に
影響していることが示唆された．
以上のように，展示エリアごとの観察条件の違いが描画

点数・描画対象の偏りを生み，実験室実験と実地実験の精
度差を引き起こす主要因となっている．特に，天空エリア
における観察困難性が実地実験のデータ品質を不均一にし，
検索精度を不安定にする方向に作用していると考える．

7. おわりに
本研究では，ペンギンの腹部模様の描画に基づく個体検

索手法において，従来の 3× 3 グリッドのみを用いるアル
ゴリズムの課題に対し，複数のグリッド分割で得られたス
コアを統合する手法を提案した．実験室実験データおよび
サンシャイン水族館で取得した実地実験データに対して評
価を行った結果，実験室データでは G = {3, 4, 5}を用いた
場合に Top-1が 0.889と従来手法から大きく改善した．実
地実験データにおいても G = {2, 3, 5}または G = {3, 4, 5}
で従来手法より高い精度が得られることが明らかとなった．
また，グリッド分割数を段階的に増加させた分割数増加
に伴う精度の分析から，実験室環境では 10× 10付近まで
精度向上が続く一方，実地環境では 6× 6程度で早期に飽
和し，それ以上の細分割では精度がむしろ低下することが
示された．この結果は，静止画像を十分に観察できる実験
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表 4 実地実験におけるペンギンごとの描画回数（回数降順）
ペンギン名（エリア） 回数 ペンギン名（エリア） 回数 ペンギン名（エリア） 回数
武蔵（草原） 19 オレンジ（草原） 4 白桃（天空） 1

ぽてと（草原） 18 おいも（天空） 4 あやさ（草原） 1

オレライム（草原） 14 くるみ（天空） 3 ピンクライム（天空） 1

のんちゃん（草原） 13 オレンジ銀（草原） 3 金緑（天空） 1

赤ピンク（草原） 9 しろ（天空） 2 ペン太（天空） 1

ピンク（天空） 5 渚（天空） 2 青ライム（天空） 1

金（天空） 5 みぃ（天空） 2 マリオ（天空） 1

白緑（草原） 5 白ライム（草原） 2 青紫（草原） 1

緑ライム（草原） 5 黒ピンク（天空） 2 ダイスケ（草原） 1

青ピンク（天空） 5 テント（草原） 2

ピンク黄（天空） 4 緑オレンジ（天空） 2

表 5 展示エリア別の Top-k 精度比較（3×3～6×6 累積スコア）
エリア 件数 Top-1 Top-2 Top-3 Top-4 Top-5

草原 79 0.443 0.570 0.646 0.722 0.772

天空 41 0.366 0.488 0.585 0.707 0.732

室と，動き回るペンギンを限られた視認条件で観察する実
地環境とでは，適切なグリッド分割設計が異なることを示
しており，描画型検索システムのアルゴリズム設計に対し
て 1つの指針を与えるものである．
今後は，実地実験データにおける正解ラベルの不確実性

を低減するための再ラベリングや描画順序を組み込んだ設
計，および観察者の描画行動に基づくアルゴリズムの適用
が挙げられる．これらを発展させることで，水族館におけ
る来館者の能動的な観察体験をさらに支援しつつ，より精
度の高い個体検索システムの実現を予定している．
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